Chargement des données
## Linking to GEOS 3.11.2, GDAL 3.7.2, PROJ 9.3.0; sf_use_s2() is TRUE
library(ggplot2)
library(terra)
## terra 1.7.71
fra <- st_read("data/fra.gpkg")
Reading layer fra' from data source
C:_PNA_Corse.gpkg’
using driver `GPKG’ Simple feature collection with 1 feature and 168
fields Geometry type: MULTIPOLYGON Dimension: XY Bounding box: xmin:
-61.79784 ymin: -21.37078 xmax: 55.8545 ymax: 51.08754 Geodetic CRS: WGS
84
env_corse <- rast("data/env_corse_total_sync.tif")
1. Données climatiques : source de données CHELSA
Description et méta-données
Téléchargement : www.chelsa-climate.org
Intervalle temporel : 1981-2010
Type de données : Raster
Résolution initiale : 0.0083333°
Méta-données : https://chelsa-climate.org/wp-admin/download-page/CHELSA_tech_specification_V2.pdf
Références bibliographiques :
Brun, P., Zimmermann, N.E., Hari, C., Pellissier, L., Karger, D.
(2022): Data from: CHELSA-BIOCLIM+ A novel set of global climate-related
predictors at kilometre-resolution. EnviDat. https://doi.org/10.16904/envidat.332
Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H.,
Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018):
Data from: Climatologies at high resolution for the earth’s land surface
areas. EnviDat. https://doi.org/10.16904/envidat.228.v2.1
Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H.,
Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017):
Climatologies at high resolution for the Earth land surface areas.
Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122
Brun, P., Zimmermann, N.E., Hari, C., Pellissier, L., Karger,
D.N. (preprint): Global climate-related predictors at kilometre
resolution for the past and future. Earth Syst. Sci. Data
Discuss. https://doi.org/10.5194/essd-2022-212
Licence : Creative Commons Zero - No Rights Reserved
(CC0 1.0)
Description des variables : Les variables
bioclimatiques (variables bio1 à bio19) sont décrites dans Karger et al. 2017.
Les autres variables sont décrites dans Brun et al. (2022). La
variable de température minimale de la saison estivale pour les
chiroptères a été calculée à partir des valeurs mensuelles de
température minimale pour les mois de mai à septembre.
Illustration des variables
vars <- xlsx::read.xlsx("data/chelsa_variable_names.xlsx",
sheetIndex = 1)
for(i in 1:54){
plot(env_corse[[i]],
col = viridis::plasma(12),
main = vars$longname[i])
plot(st_geometry(fra), add = TRUE,
border = grey(0.3))
print(knitr::kable(vars[i, ]))
}
bio1 |
mean annual air temperature |
°C |
0.1 |
-273.15 |
mean annual daily mean air temperatures averaged over 1
year |
2 |
bio2 |
mean diurnal air temperature range |
°C |
0.1 |
0 |
mean diurnal range of temperatures averaged over 1
year |
3 |
bio3 |
isothermality |
°C |
0.1 |
0 |
ratio of diurnal variation to annual variation in
temperatures |
4 |
bio4 |
temperature seasonality |
°C/100 |
0.1 |
0 |
standard deviation of the monthly mean
temperatures |
5 |
bio5 |
mean daily maximum air temperature of the warmest
month |
°C |
0.1 |
-273.15 |
The highest temperature of any monthly daily mean
maximum temperature |
6 |
bio6 |
mean daily minimum air temperature of the coldest
month |
°C |
0.1 |
-273.15 |
The lowest temperature of any monthly daily mean
maximum temperature |
7 |
bio7 |
annual range of air temperature |
°C |
0.1 |
0 |
The difference between the Maximum Temperature of
Warmest month and the Minimum Temperature of Coldest month |
8 |
bio8 |
mean daily mean air temperatures of the wettest
quarter |
°C |
0.1 |
-273.15 |
The wettest quarter of the year is determined (to the
nearest month) |
9 |
bio9 |
mean daily mean air temperatures of the driest
quarter |
°C |
0.1 |
-273.15 |
The driest quarter of the year is determined (to the
nearest month) |
10 |
bio10 |
mean daily mean air temperatures of the warmest
quarter |
°C |
0.1 |
-273.15 |
The warmest quarter of the year is determined (to the
nearest month) |
11 |
bio11 |
mean daily mean air temperatures of the coldest
quarter |
°C |
0.1 |
-273.15 |
The coldest quarter of the year is determined (to the
nearest month) |
12 |
bio12 |
annual precipitation amount |
kg m-2 year-1 |
0.1 |
0 |
Accumulated precipitation amount over 1 year |
13 |
bio13 |
precipitation amount of the wettest month |
kg m-2 month-1 |
0.1 |
0 |
The precipitation of the wettest month. |
14 |
bio14 |
precipitation amount of the driest month |
kg m-2 month-1 |
0.1 |
0 |
The precipitation of the driest month. |
15 |
bio15 |
precipitation seasonality |
kg m-2 |
0.1 |
0 |
The Coefficient of Variation is the standard deviation
of the monthly precipitation estimates expressed as a percentage of the
mean of those estimates (i.e. the annual mean) |
16 |
bio16 |
mean monthly precipitation amount of the wettest
quarter |
kg m-2 month-1 |
0.1 |
0 |
The wettest quarter of the year is determined (to the
nearest month) |
17 |
bio17 |
mean monthly precipitation amount of the driest
quarter |
kg m-2 month-1 |
0.1 |
0 |
The driest quarter of the year is determined (to the
nearest month) |
18 |
bio18 |
mean monthly precipitation amount of the warmest
quarter |
kg m-2 month-1 |
0.1 |
0 |
The warmest quarter of the year is determined (to the
nearest month) |
19 |
bio19 |
mean monthly precipitation amount of the coldest
quarter |
kg m-2 month-1 |
0.1 |
0 |
The coldest quarter of the year is determined (to the
nearest month) |
20 |
cmi_max |
Maximum monthly climate moisture index |
kg m-2 month-1 |
0.1 |
0 |
The climate moisture index of the month with the
highest precipitation surplus |
21 |
cmi_mean |
Mean monthly climate moisture index |
kg m-2 month-1 |
0.1 |
0 |
Average monthly climate moisture index over 1 year |
22 |
cmi_min |
Minimum monthly climate moisture index |
kg m-2 month-1 |
0.1 |
0 |
The climate moisture index of the month with the
highest precipitation deficit |
23 |
cmi_range |
Annual range of monthly climate moisture index |
kg m-2 month-1 |
0.1 |
0 |
Difference between maximum and minimum monthly climate
moisture index |
24 |
gdd0 |
Growing degree days heat sum above 0°C |
°C |
0.1 |
0 |
heat sum of all days above the 0°C temperature
accumulated over 1 year. |
25 |
gdd5 |
Growing degree days heat sum above 5°C |
°C |
0.1 |
0 |
heat sum of all days above the 5°C temperature
accumulated over 1 year. |
26 |
gdd10 |
Growing degree days heat sum above 10°C |
°C |
0.1 |
0 |
heat sum of all days above the 10°C temperature
accumulated over 1 year. |
27 |
gsl |
growing season length TREELIM |
number of days |
- |
- |
Length of the growing season |
28 |
gsp |
Accumulated precipiation amount on growing season days
TREELIM |
kg m-2 |
|
|
|
gsl-1 |
0.1 |
0 |
precipitation sum accumulated on all days during the
growing season based on TREELIM (https://doi.org/10.1007/s00035-014-0124-0) |
|
|
|
30 |
hurs_max |
Maximum monthly near surface relative humidity |
% |
0.01 |
0 |
The highest monthly near-surface relative humidity |
31 |
hurs_mean |
Mean monthly near-surface relative humidity |
% |
0.01 |
0 |
Average monthly near-surface relative humidity over 1
year |
32 |
hurs_min |
Minimum monthly near surface relative humidity |
% |
0.01 |
0 |
The lowest monthly near-surface relative humidity |
33 |
hurs_range |
Annual range of monthly near surface relative
humidity |
% |
0.01 |
0 |
Difference between maximum and minimum near-surface
relative humidity |
34 |
ngd0 |
Number of growing degree days |
number of days |
- |
- |
Number of days at which tas > 0°C |
35 |
ngd5 |
Number of growing degree days |
number of days |
- |
- |
Number of days at which tas > 5°C |
36 |
ngd10 |
Number of growing degree days |
number of days |
- |
- |
Number of days at which tas > 10°C |
37 |
npp |
Net primary productivity |
g C m-2 yr-1 |
0.1 |
0 |
Calculated based on the ‘Miami model’, Lieth, H., 1972.
“Modelling the primary productivity of the earth. Nature and resources”,
UNESCO, VIII, 2:5-10. |
38 |
pet_penman_max |
Maximum monthly potential evapotranspiration |
kg m-2 month-1 |
0.01 |
0 |
The highest monthly potential evaporation; calculated
with the Penman-Monteith equation. |
39 |
pet_penman_mean |
Mean monthly potential evapotranspiration |
kg m-2 month-1 |
0.01 |
0 |
Average monthly potential evaporation over 1 year;
calculated with the Penman-Monteith equation. |
40 |
pet_penman_min |
Minimum monthly potential evapotranspiration |
kg m-2 month-1 |
0.01 |
0 |
The lowest monthly potential evaporation; calculated
with the Penman-Monteith equation. |
41 |
pet_penman_range |
Annual range of monthly potential
evapotranspiration |
kg m-2 |
0.01 |
0 |
Difference between maximum and minimum monthly
potential evapotranspiration; calculated with the Penman-Monteith
equation |
42 |
rsds_max |
Maximum monthly surface downwelling shortwave flux in
air |
MJ m-2 d-1 |
0.001 |
0 |
The highest monthly surface downwelling shortwave flux
in air |
43 |
rsds_mean |
Mean monthly surface downwelling shortwave flux in
air |
MJ m-2 d-1 |
0.001 |
0 |
Average monthly surface downwelling shortwave flux in
air over 1 year |
44 |
rsds_min |
Minimum monthly surface downwelling shortwave flux in
air |
MJ m-2 d-1 |
0.001 |
0 |
The lowest monthly surface downwelling shortwave flux
in air |
45 |
rsds_range |
Annual range of monthly surface downwelling shortwave
flux in air |
MJ m-2 d-1 |
0.001 |
0 |
Difference between maximum and minimum monthly surface
downwelling shortwave flux in air |
47 |
sfcWind_max |
Maximum monthly near surface wind speed |
m s-1 |
0.001 |
0 |
The highest monthly near-surface wind speed; near
surface represents 10 m above ground. |
48 |
sfcWind_mean |
Mean monthly near-surface wind speed |
m s-1 |
0.001 |
0 |
Average monthly near-surface wind speed over 1 year;
near surface represents 10 m above ground. |
49 |
sfcWind_min |
Minimum monthly near surface wind speed |
m s-1 |
0.001 |
0 |
The lowest monthly near-surface wind speed; near
surface represents 10 m above ground. |
50 |
sfcWind_range |
Annual range of monthly near surface wind speed |
m s-1 |
0.001 |
0 |
Difference between maximum and minimum monthly
near-surface wind speed; near surface represents 10 m above ground. |
51 |
vpd_max |
Maximum monthly vapor pressure deficit |
Pa |
0.1 |
0 |
The highest monthly vapor pressure deficit |
52 |
vpd_mean |
Mean monthly vapor pressure deficit |
Pa |
0.1 |
0 |
Average monthly vapor pressure deficit over 1 year |
53 |
vpd_min |
Minimum monthly vapor pressure deficit |
Pa |
0.1 |
0 |
The lowest monthly vapor pressure deficit |
54 |
vpd_range |
Annual range of monthly vapor pressure deficit |
Pa |
0.1 |
0 |
Difference between maximum and minimum monthly vapor
pressure deficit |
plot(env_corse[["tasmin_chiro"]],
col = viridis::plasma(12),
main = "Température minimale de la saison estivale")
plot(st_geometry(fra), add = TRUE,
border = grey(0.3))
2. Données routes
Illustration des variables
plot(env_corse[["distance_routes"]],
col = viridis::plasma(12),
main = "Distance aux routes")
plot(st_geometry(fra), add = TRUE,
border = grey(0.3))
3. Données hydrographiques
Description et méta-données
Téléchargement : https://geoservices.ign.fr/bdtopo
Intervalle temporel : 2023
Type de données : Vectoriel
Précision : 1:2000 à 1:50000
Méta-données : https://geoservices.ign.fr/documentation/donnees/vecteur/bdtopo
Références bibliographiques :
Licence : licence ouverte Etalab 2.0
Description des variables : Les cours d’eau et les
plans d’eau ont été fournis par la DREAL de Corse en résolution très
fine (environ 0.0026 * 0.0017°), présence-absence par cellule. Ils ont
été agrégés à la résolution des variables climatiques (0.0083333°) pour
créer deux variables :
la proportion de milieux d’eau douce dans chaque cellule de
0.0083333°
la distance aux milieux d’eau douce, calculée comme la distance à
la cellule la plus proche contenant au moins un milieu d’eau douce, en
mètres
Illustration des variables
plot(env_corse[["milieux_eaudouce"]],
col = viridis::plasma(12),
main = "Proportion de milieux d'eau douce")
plot(st_geometry(fra), add = TRUE,
border = grey(0.3))